
Supplemental information:
Simultaneous creation of multiple vortex-antivortex pairs in

momentum space in photonic lattices

1 Determination of reciprocal lattice

Figure S1: Coupling field E2 intensity profile in momentum space.

2 Simulation details

2.1 Paraxial approximation and Schrödinger equation
The field profile in the cell can be written in general form as

E⃗(x, y, z, t) = E⃗0a(x, y, z)e
i(k0nz−ωt), (1)

where ω is the frequency of the laser beam, n is the refraction coefficient, k0 is the wave vector
of light in the vacuum, E⃗0 is the amplitude vector, and a defines the slowly varying profile of the
electric field.

In the paraxial approximation ∂2a/∂z2 ≪ k0∂a/∂z the electric field envelope a obeys the
parabolic partial differential equation

i∂za =

[
− ∆

2k0n0
− k20

(
n2 − n20

)]
a, (2)

where ∆ = ∂2x + ∂2y , n = n(x, y) is the laterally varying part of the refractive index due to the
optical modulation with the coupling field, n0=1 is the background refraction index.



Equation (2) is equivalent to the time-dependent Schrödinger equation with z coordinate playing
the role of time, with the mass given by m = h̄k0n0/c, and the potential energy U(x, y) determined
by the spatial variation of the refraction index: U(x, y) = −h̄ck20(n2 − n20), where c is the speed of
light. The initial condition for the envelope field a is governed by the Gaussian profile of the probe
beam entering the vapor cell (at z = 0). The time-dependent Eq. (2) with the honeycomb lattice
potential was solved numerically in the general case of spatially varying effective potential lattice
U(x, y) and in the tight-binding approximation.

Figure S2: Initial states for the Schrödinger equation simulation for various symmetries of wave
function C3v (a), C6v (b), C2v (c). The magnitudes of honeycomb-type potential profile and initial
wave function absolute value are normalized to unity and summed.

2.2 Tight binding model calculations
To test the robustness of the results and their sensitivity to the particular shape of the site potential,
the time-dependent tight-binding-type model (TBM) calculations on the honeycomb lattice were
performed. The corresponding equation writes as

ih̄∂tψi = t
∑
{j}

ψj , (3)

where ψi is the wave function at site i, t is the hopping parameter and j-summation is conducted
over the 3 nearest neighbors of the site i. The eigenstates ψ(ν) for the finite-size graphene crystal
were obtained by numerical diagonalization of the tight-binding Hamiltonian. The initial wave
function ψ(t = 0) was projected onto these eigenstates: ψ(t = 0) =

∑
cνψ

(ν). Due to the linearity
of the system, the wave function time dependence writes as

ψi(t) =
∑
ν

cνψ
(ν) · exp(−iωνt). (4)

The results of the TBM were then converted into real-space field using the assumption of
uniform WF distribution at each site for direct comparison of the two models. Spline interpolation
of the WF using the TBM results was also employed, both approaches showed qualitatively similar
results, confirming the validity of the model.
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3 Existence of vortices for C3v symmetry tetramer

Figure S3: Formation of the regular 6 vortex pattern in momentum space (as in Fig. 3 of the
main text) for the tetramer of C3v symmetry. The central site has the wave function Ψ0 = 1 and
three neighbors have the wave function Ψ1,2,3 = aeiφ (see the lower inset). Black color in the
phase diagram of parameters a and ϕ corresponds to the formation of vortices in momentum and
white color is for their absence. If a ≫ 1 then the Fourier image has a form described by ψ̃ (k) =∑

{j} e
−ikdj . This limit case describes the initial stages of C3v symmetry WF evolution in the

honeycomb lattice after excitation of a single site as discussed in the main text and simultaneously
the hexagonal lattice with wave function located at three sites forming a triangle. The upper inset
shows the phase pattern in momentum space for the case a≫ 1.
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